jswd
山東茂隆新材料 2023-04-04 2403
今天小編來聊一聊混凝土的一些小知識,下面一起看一下吧。
混凝土裂縫的形成和控制
混凝土結構物的裂縫可分為微觀裂縫和宏觀裂縫。微觀裂縫是指那些肉眼看不見的裂縫,主要有三種,一是骨料與水泥石粘合面上的裂縫,稱為粘著裂縫;二是水泥石中自身的裂縫,稱為水泥石裂縫;三是骨料本身的裂縫,稱為骨料裂縫。微觀裂縫在混凝土結構中的分布是不規(guī)則、不貫通的。反之,肉眼看得見的裂縫稱為宏觀裂縫,這類裂縫的范圍一般不小于0.05mm。宏觀裂縫是微觀裂縫擴展而來的。因此在混凝土結構中裂縫是絕對存在的,只是應將其控制在符合規(guī)范要求范圍內,以不致發(fā)展到有害裂縫。
混凝土裂縫產生的主要原因
混凝土結構的宏觀裂縫產生的原因主要有三種,一是由外荷載引起的,這是發(fā)生最為普遍的一種情況,即按常規(guī)計算的主要應力引起的;二是結構次應力引起的裂縫,這是由于結構的實際工作狀態(tài)與計算假設模型的差異引起的;三是變形應力引起的裂縫,這是由溫度、收縮、膨脹、不均勻沉降等因素引起結構變形,當變形受到約束時便產生應力,當此應力超過混凝土抗拉強度時就產生裂縫。
當混凝土結構物產生變形時,在結構的內部、結構與結構之間,都會受到相互影響、相互制約,這種現象稱為約束。當混凝土結構截面較厚時,其內部溫度和濕度分布不均勻,引起內部不同部位的變形相互約束,這樣的約束稱之為內約束;當一個結構物的變形受到其他結構的阻礙所受到的約束稱為外約束。外約束又可分為自由體、全約束和彈性約束。建筑工程中的大體積混凝土結構所承受的變形,主要是因溫差和收縮而產生的。
建筑工程中的大體積混凝土結構中,由于結構截面大,水泥用量多,水泥水化所釋放的水化熱會產生較大的溫度變化和收縮作用,由此形成的溫度收縮應力是導致鋼筋混凝土產生裂縫的主要原因。這種裂縫有表面裂縫和貫通裂縫兩種。表面裂縫是由于混凝土表面和內部的散熱條件不同,溫度外低內高,形成了溫度梯度,使混凝土內部產生壓應力,表面產生拉應力,表面的拉應力超過混凝土抗拉強度而引起的。貫通裂縫是由于大體積混凝土在強度發(fā)展到一定程度,混凝土逐漸降溫,這個降溫差引起的變形加上混凝土失水引起的體積收縮變形,受到地基和其他結構邊界條件的約束時引起的拉應力,超過混凝土抗拉強度時所可能產生的貫通整個截面的裂縫。這兩種裂縫不同程度上,都屬有害裂縫。
高強度的混凝土早期收縮較大,這是由于高強混凝土中以30%~60%礦物細摻合料替代水泥,高效減水劑摻量為膠凝材料總量的1%~2%,水膠比為0.25~0.40,改善了混凝土的微觀結構,給高強混凝土帶來許多優(yōu)良特性,但其負面效應最突出的是混凝土收縮裂縫幾率增多。高強混凝土的收縮,主要是干燥收縮、溫度收縮、塑性收縮、化學收縮和自收縮。混凝土初現裂紋的時間可以作為判斷裂紋原因的參考:塑性收縮裂紋大約在澆筑后幾小時到十幾小時出現;溫度收縮裂紋大約在澆筑后2到10d出現;自收縮主要發(fā)生在混凝土凝結硬化后的幾天到幾十天;干燥收縮裂紋出現在接近1年齡期內。
干燥收縮:當混凝土在不飽和空氣中失去內部毛細孔和凝膠孔的吸附水時,就會產生干縮,高性能混凝土的孔隙率比普通混凝土低,故干縮率也低。
塑性收縮:塑性收縮發(fā)生在混凝土硬化前的塑性階段。高強混凝土的水膠比低,自由水分少,礦物細摻合料對水有更高的敏感性,高強混凝土基本不泌水,表面失水更快,所以高強混凝土塑性收縮比普通混凝土更容易產生。
自收縮:密閉的混凝土內部相對濕度隨水泥水化的進展而降低,稱為自干燥。自干燥造成毛細孔中的水分不飽和而產生負壓,因而引起混凝土的自收縮。高強混凝土由于水膠比低,早期強度較快的發(fā)展,會使自由水消耗快,致使孔體系中相對濕度低于80%,而高強混凝土結構較密實,外界水很難滲入補充,導致混凝土產生自收縮。高強混凝土的總收縮中,干縮和自收縮幾乎相等,水膠比越低,自收縮所占比例越大。與普通混凝土完全不同,普通混凝土以干縮為主,而高強混凝土以自收縮為主。
溫度收縮:對于強度要求較高的混凝土,水泥用量相對較多,水化熱大,溫升速率也較大,一般可達35~40℃,加上初始溫度可使最高溫度超過70~80℃。一般混凝土的熱膨脹系數為10×10-6/℃,當溫度下降20~25℃時造成的冷縮量為2~2.5×10-4,而混凝土的極限拉伸值只有1~1.5×10-4,因而冷縮常引起混凝土開裂。
化學收縮:水泥水化后,固相體積增加,但水泥-水體系的絕對體積則減小,形成許多毛細孔縫,高強混凝土水膠比小,外摻礦物細摻合料,水化程度受到制約,故高強混凝土的化學收縮量小于普通混凝土。
當混凝土發(fā)生收縮并受到外部或內部約束時,就會產生拉應力,并有可能引起開裂。對于高強混凝土雖然有較高的抗拉強度,可是彈性模量也高,在相同收縮變形下,會引起較高的拉應力,而由于高強混凝土的徐變能力低,應力松弛量較小,所以抗裂性能差。
大體積混凝土控制溫度和收縮裂縫的技術措施
為了有效地控制有害裂縫的出現和發(fā)展,必須從控制混凝土的水化升溫、延緩降溫速率、減小混凝土收縮、提高混凝土的極限拉伸強度、改善約束條件和設計構造等方面全面考慮,結合實際采取措施。
降低水泥水化熱和變形
1、選用低水化熱或中水化熱的水泥品種配制混凝土,如礦渣硅酸鹽水泥、火山灰質硅酸鹽水泥、粉煤灰水泥、復合水泥等。
2、充分利用混凝土的后期強度,減少每立方米混凝土中水泥用量。根據試驗每增減10kg水泥,其水化熱將使混凝土的溫度相應升降1℃。
3、使用粗骨料,盡量選用粒徑較大、級配良好的粗細骨料;控制砂石含泥量;摻加粉煤灰等摻合料或摻加相應的減水劑、緩凝劑,改善和易性、降低水灰比,以達到減少水泥用量、降低水化熱的目的。
4、在基礎內部預埋冷卻水管,通入循環(huán)冷卻水,強制降低混凝土水化熱溫度。
5、在厚大無筋或少筋的大體積混凝土中,摻加總量不超過20%的大石塊,減少混凝土的用量,以達到節(jié)省水泥和降低水化熱的目的。
6、在拌合混凝土時,還可摻入適量的微膨脹劑或膨脹水泥,使混凝土得到補償收縮,減少混凝土的溫度應力。
7、改善配筋。為了保證每個澆筑層上下均有溫度筋,可建議設計人員將分布筋做適當調整。溫度筋宜分布細密,一般用φ8鋼筋,雙向配筋,間距15cm。這樣可以增強抵抗溫度應力的能力。上層鋼筋的綁扎,應在澆筑完下層混凝土之后進行。
8、設置后澆縫。當大體積混凝土平面尺寸過大時,可以適當設置后澆縫,以減小外應力和溫度應力;同時也有利于散熱,降低混凝土的內部溫度。
降低混凝土溫度差
1、選擇較適宜的氣溫澆筑大體積混凝土,盡量避開炎熱天氣澆筑混凝土。夏季可采用低溫水或冰水攪拌混凝土,可對骨料噴冷水霧或冷氣進行預冷,或對骨料進行覆蓋或設置遮陽裝置避免日光直曬,運輸工具如具備條件也應搭設避陽設施,以降低混凝土拌合物的入模溫度。
2、摻加相應的緩凝型減水劑,如木質素磺酸鈣等。
3、在混凝土入模時,采取措施改善和加強模內的通風,加速模內熱量的散發(fā)。
加強施工中的溫度控制
1、在混凝土澆筑之后,做好混凝土的保溫保濕養(yǎng)護,緩緩降溫,充分發(fā)揮徐變特性,減低溫度應力,夏季應注意避免曝曬,注意保濕,冬期應采取措施保溫覆蓋,以免發(fā)生急劇的溫度梯度發(fā)生。
2、采取長時間的養(yǎng)護,規(guī)定合理的拆模時間,延緩降溫時間和速度,充分發(fā)揮混凝土的“應力松弛效應”。
3、加強測溫和溫度監(jiān)測與管理,實行信息化控制,隨時控制混凝土內的溫度變化,內外溫差控制在25℃以內,基面溫差和基底面溫差均控制在20℃以內,及時調整保溫及養(yǎng)護措施,使混凝土的溫度梯度和濕度不至過大,以有效控制有害裂縫的出現。
4、合理安排施工程序,控制混凝土在澆筑過程中均勻上升,避免混凝土拌合物堆積過大高差。在結構完成后及時回填土,避免其側面長期暴露。
改善約束條件,削減溫度應力
1、采取分層或分塊澆筑大體積混凝土,合理設置水平或垂直施工縫,或在適當的位置設置施工后澆帶,以放松約束程度,減少每次澆筑長度的蓄熱量,防止水化熱的積聚,減少溫度應力。
2、對大體積混凝土基礎與巖石地基,或基礎與厚大的混凝土墊層之間設置滑動層,如采用平面澆瀝青膠鋪砂、或刷熱瀝青或鋪卷材。在垂直面、鍵槽部位設置緩沖層,如鋪設30 ~50mm厚瀝青木絲板或聚苯乙烯泡沫塑料,以消除嵌固作用,釋放約束應力。
提高混凝土的極限拉伸強度
1、選擇良好級配的粗骨料,嚴格控制其含泥量,加強混凝土的振搗,提高混凝土密實度和抗拉強度,減小收縮變形,保證施工質量。
2、采取二次投料法,二次振搗法,澆筑后及時排除表面積水,加強早期養(yǎng)護,提高混凝土早期或相應齡期的抗拉強度和彈性模量。
3、在大體積混凝土基礎內設置必要的溫度配筋,在截面突變和轉折處,底、頂板與墻轉折處,孔洞轉角及周邊,增加斜向構造配筋,以改善應力集中,防止裂縫的出現。
上面就是今天的內容,感謝大家的閱讀和觀看,希望對大家有幫助,如果您有什么不懂的,歡迎聯系我們的工作人員,我們將竭誠為您服務,期待我們以后的合作。
Demand feedback